Skip to content

TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph (arXiv:2501.06997)

Notifications You must be signed in to change notification settings

wangkai-tech23/TFLAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TFLAG

This repository contains the implementation of the approach proposed in the paper "TFLAG: Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph".

Environment Configuration

conda create -n TFLAG python=3.9
conda activate TFLAG
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_scatter-2.0.9-cp39-cp39-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_sparse-0.6.12-cp39-cp39-linux_x86_64.whl
pip install torch_scatter-2.0.9-cp39-cp39-linux_x86_64.whl
pip install torch_sparse-0.6.12-cp39-cp39-linux_x86_64.whl
pip install torch_geometric==2.0.4
conda install -c conda-forge scikit-learn
pip install numpy==1.23.5

Create two new folders:time_windows/test_data and time_windows/test_data, under the dataset/ folder in advance.

Overall architecture

Run train.py to train the model.

python train.py

Run test.py to detect the following system behavior.

python test.py

Run anomly_time_windows.py to process the detected data into time windows

python anomly_time_windows.py

Run eval.py to evaluate the overall results

python eval.py

Contact 23S030142@stu.hit.edu.cn if you have other questions.

About

TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph (arXiv:2501.06997)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages