diff --git a/docs/README.skills.md b/docs/README.skills.md
index 93399de8..52183b72 100644
--- a/docs/README.skills.md
+++ b/docs/README.skills.md
@@ -22,6 +22,13 @@ Skills differ from other primitives by supporting bundled assets (scripts, code
| Name | Description | Bundled Assets |
| ---- | ----------- | -------------- |
+| [agentic-eval](../skills/agentic-eval/SKILL.md) | Patterns and techniques for evaluating and improving AI agent outputs. Use this skill when:
+- Implementing self-critique and reflection loops
+- Building evaluator-optimizer pipelines for quality-critical generation
+- Creating test-driven code refinement workflows
+- Designing rubric-based or LLM-as-judge evaluation systems
+- Adding iterative improvement to agent outputs (code, reports, analysis)
+- Measuring and improving agent response quality | None |
| [appinsights-instrumentation](../skills/appinsights-instrumentation/SKILL.md) | Instrument a webapp to send useful telemetry data to Azure App Insights | `LICENSE.txt`
`examples/appinsights.bicep`
`references/ASPNETCORE.md`
`references/AUTO.md`
`references/NODEJS.md`
`references/PYTHON.md`
`scripts/appinsights.ps1` |
| [azure-resource-visualizer](../skills/azure-resource-visualizer/SKILL.md) | Analyze Azure resource groups and generate detailed Mermaid architecture diagrams showing the relationships between individual resources. Use this skill when the user asks for a diagram of their Azure resources or help in understanding how the resources relate to each other. | `LICENSE.txt`
`assets/template-architecture.md` |
| [azure-role-selector](../skills/azure-role-selector/SKILL.md) | When user is asking for guidance for which role to assign to an identity given desired permissions, this agent helps them understand the role that will meet the requirements with least privilege access and how to apply that role. | `LICENSE.txt` |
diff --git a/skills/agentic-eval/SKILL.md b/skills/agentic-eval/SKILL.md
new file mode 100644
index 00000000..3cb14203
--- /dev/null
+++ b/skills/agentic-eval/SKILL.md
@@ -0,0 +1,189 @@
+---
+name: agentic-eval
+description: |
+ Patterns and techniques for evaluating and improving AI agent outputs. Use this skill when:
+ - Implementing self-critique and reflection loops
+ - Building evaluator-optimizer pipelines for quality-critical generation
+ - Creating test-driven code refinement workflows
+ - Designing rubric-based or LLM-as-judge evaluation systems
+ - Adding iterative improvement to agent outputs (code, reports, analysis)
+ - Measuring and improving agent response quality
+---
+
+# Agentic Evaluation Patterns
+
+Patterns for self-improvement through iterative evaluation and refinement.
+
+## Overview
+
+Evaluation patterns enable agents to assess and improve their own outputs, moving beyond single-shot generation to iterative refinement loops.
+
+```
+Generate → Evaluate → Critique → Refine → Output
+ ↑ │
+ └──────────────────────────────┘
+```
+
+## When to Use
+
+- **Quality-critical generation**: Code, reports, analysis requiring high accuracy
+- **Tasks with clear evaluation criteria**: Defined success metrics exist
+- **Content requiring specific standards**: Style guides, compliance, formatting
+
+---
+
+## Pattern 1: Basic Reflection
+
+Agent evaluates and improves its own output through self-critique.
+
+```python
+def reflect_and_refine(task: str, criteria: list[str], max_iterations: int = 3) -> str:
+ """Generate with reflection loop."""
+ output = llm(f"Complete this task:\n{task}")
+
+ for i in range(max_iterations):
+ # Self-critique
+ critique = llm(f"""
+ Evaluate this output against criteria: {criteria}
+ Output: {output}
+ Rate each: PASS/FAIL with feedback as JSON.
+ """)
+
+ critique_data = json.loads(critique)
+ all_pass = all(c["status"] == "PASS" for c in critique_data.values())
+ if all_pass:
+ return output
+
+ # Refine based on critique
+ failed = {k: v["feedback"] for k, v in critique_data.items() if v["status"] == "FAIL"}
+ output = llm(f"Improve to address: {failed}\nOriginal: {output}")
+
+ return output
+```
+
+**Key insight**: Use structured JSON output for reliable parsing of critique results.
+
+---
+
+## Pattern 2: Evaluator-Optimizer
+
+Separate generation and evaluation into distinct components for clearer responsibilities.
+
+```python
+class EvaluatorOptimizer:
+ def __init__(self, score_threshold: float = 0.8):
+ self.score_threshold = score_threshold
+
+ def generate(self, task: str) -> str:
+ return llm(f"Complete: {task}")
+
+ def evaluate(self, output: str, task: str) -> dict:
+ return json.loads(llm(f"""
+ Evaluate output for task: {task}
+ Output: {output}
+ Return JSON: {{"overall_score": 0-1, "dimensions": {{"accuracy": ..., "clarity": ...}}}}
+ """))
+
+ def optimize(self, output: str, feedback: dict) -> str:
+ return llm(f"Improve based on feedback: {feedback}\nOutput: {output}")
+
+ def run(self, task: str, max_iterations: int = 3) -> str:
+ output = self.generate(task)
+ for _ in range(max_iterations):
+ evaluation = self.evaluate(output, task)
+ if evaluation["overall_score"] >= self.score_threshold:
+ break
+ output = self.optimize(output, evaluation)
+ return output
+```
+
+---
+
+## Pattern 3: Code-Specific Reflection
+
+Test-driven refinement loop for code generation.
+
+```python
+class CodeReflector:
+ def reflect_and_fix(self, spec: str, max_iterations: int = 3) -> str:
+ code = llm(f"Write Python code for: {spec}")
+ tests = llm(f"Generate pytest tests for: {spec}\nCode: {code}")
+
+ for _ in range(max_iterations):
+ result = run_tests(code, tests)
+ if result["success"]:
+ return code
+ code = llm(f"Fix error: {result['error']}\nCode: {code}")
+ return code
+```
+
+---
+
+## Evaluation Strategies
+
+### Outcome-Based
+Evaluate whether output achieves the expected result.
+
+```python
+def evaluate_outcome(task: str, output: str, expected: str) -> str:
+ return llm(f"Does output achieve expected outcome? Task: {task}, Expected: {expected}, Output: {output}")
+```
+
+### LLM-as-Judge
+Use LLM to compare and rank outputs.
+
+```python
+def llm_judge(output_a: str, output_b: str, criteria: str) -> str:
+ return llm(f"Compare outputs A and B for {criteria}. Which is better and why?")
+```
+
+### Rubric-Based
+Score outputs against weighted dimensions.
+
+```python
+RUBRIC = {
+ "accuracy": {"weight": 0.4},
+ "clarity": {"weight": 0.3},
+ "completeness": {"weight": 0.3}
+}
+
+def evaluate_with_rubric(output: str, rubric: dict) -> float:
+ scores = json.loads(llm(f"Rate 1-5 for each dimension: {list(rubric.keys())}\nOutput: {output}"))
+ return sum(scores[d] * rubric[d]["weight"] for d in rubric) / 5
+```
+
+---
+
+## Best Practices
+
+| Practice | Rationale |
+|----------|-----------|
+| **Clear criteria** | Define specific, measurable evaluation criteria upfront |
+| **Iteration limits** | Set max iterations (3-5) to prevent infinite loops |
+| **Convergence check** | Stop if output score isn't improving between iterations |
+| **Log history** | Keep full trajectory for debugging and analysis |
+| **Structured output** | Use JSON for reliable parsing of evaluation results |
+
+---
+
+## Quick Start Checklist
+
+```markdown
+## Evaluation Implementation Checklist
+
+### Setup
+- [ ] Define evaluation criteria/rubric
+- [ ] Set score threshold for "good enough"
+- [ ] Configure max iterations (default: 3)
+
+### Implementation
+- [ ] Implement generate() function
+- [ ] Implement evaluate() function with structured output
+- [ ] Implement optimize() function
+- [ ] Wire up the refinement loop
+
+### Safety
+- [ ] Add convergence detection
+- [ ] Log all iterations for debugging
+- [ ] Handle evaluation parse failures gracefully
+```